Pentapeptides derived from Abeta 1-42 protect neurons from the modulatory effect of Abeta fibrils--an in vitro and in vivo electrophysiological study.
Szegedi V., Fülöp L., Farkas T., Rózsa E., Robotka H., Kis Z., Penke Z., Horváth S., Molnár Z., Datki Z., Soós K., Toldi J., Budai D., Zarándi M., Penke B.
Short fragments and fragment analogues of beta-amyloid 1-42 peptide (Abeta1-42) display a protective effect against Abeta-mediated neurotoxicity. After consideration of our earlier results with in vitro bioassay of synthetic Abeta-recognition peptides and toxic fibrillar amyloids, five pentapeptides were selected as putative neuroprotective agents: Phe-Arg-His-Asp-Ser amide (Abeta4-8) and Gly-Arg-His-Asp-Ser amide (an analogue of Abeta4-8), Leu-Pro-Tyr-Phe-Asp amide (an analogue of Abeta17-21), Arg-Ile-Ile-Gly-Leu amide (an analogue of Abeta30-34), and Arg-Val-Val-Ile-Ala amide (an analogue of Abeta38-42). In vitro electrophysiological experiments on rat brain slices demonstrated that four of these peptides counteracted with the field excitatory postsynaptic potential-attenuating effect of Abeta1-42; only Arg-Val-Val-Ile-Ala amide proved inactive. In in vivo experiments using extracellular single-unit recordings combined with iontophoresis, all these pentapeptides except Arg-Val-Val-Ile-Ala amide protected neurons from the NMDA response-enhancing effect of Abeta1-42 in the hippocampal CA1 region. These results suggest that Abeta recognition sequences may serve as leads for the design of novel neuroprotective compounds.