Synthesis, photophysical, electrochemical and electroluminescent properties of a novel iridium(III) complex based on 2-phenylbenzo[d]oxazole derivative.
Li X., Yu X-T., Chi H-J., Dong Y., Xiao G-Y., Lei P., Zhang D-Y., Cui Z.
A new phosphorescent iridium (III) complex based on 2-(4-tert-butylphenyl)-5-methylbenzo[d]oxazole as main ligand, i.e. bis(2-(4-tert-butylphenyl)-5-methylbenzo[d]oxazole-N,C(2'))iridium(acetylacetonate) [(tmbo)2Ir(acac)], was synthesized for organic light-emitting diodes (OLEDs), and its photophysical, electrochemical and electroluminescent properties were investigated. The complex displayed strong phosphorescence emission, high decomposition temperature, short phosphorescent lifetime and reversible redox electrochemical behavior. The OLEDs based on (tmbo)2Ir(acac) as dopant emitter exhibited maximum luminance efficiency of 26.1cdA(-1) and high luminance of 16,445 cd m(-2). Interestingly, highly doped device based on (tmbo)2Ir(acac) showed high efficiency with negligible roll-off under a wide range of driving current density, which was mainly attributed to the effect of bulky steric hindrance of multi-methyl groups on this complex and its short phosphorescent lifetime.