Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The precise placement and efficient deposition of semiconducting single-walled carbon nanotubes (sc-SWCNTs) on substrates are challenges for achieving printed high-performance SWCNT thin-film transistors (TFTs) with independent gates. It was found that the wettability of the substrate played a key role in the electrical properties of TFTs for sc-SWCNTs sorted by poly[(9,9-dioctylfluorene-2,7-diyl)-co-(1,4-benzo-2,1,3-thiadiazole)] (PFO-BT). In the present work we report a simple and scalable method which can rapidly and selectively deposit a high concentration of sc-SWCNTs in TFT channels by aerosol-jet-printing. The method is based on oxygen plasma treatment of substrates, which tunes the surface wettability. TFTs printed on the treated substrates demonstrated a low operation voltage, small hysteresis, high mobility up to 32.3 cm2 V-1 s-1, and high on/off ratio up to 106 after only two printings. Their mobilities were 10 and 30 times higher than those of TFTs fabricated on untreated and low-wettability substrates. The uniformity of printed TFTs was also greatly improved. Inverters were constructed by printed top-gate TFTs, and a maximum voltage gain of 17 at Vdd = 5 V was achieved. The mechanism of such improvements is that the PFO-BT-functionalized sc-SWCNTs are preferably immobilized on the oxygen plasma treated substrates due to the strong hydrogen bonds between sc-SWCNTs and hydroxyl groups on the substrates. © 2014 American Chemical Society.

Original publication

DOI

10.1021/am502168x

Type

Journal article

Journal

ACS Applied Materials and Interfaces

Publication Date

09/07/2014

Volume

6

Pages

9997 - 10004