Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim P-type and n-type top-gate carbon nanotube thin-film transistors (TFTs) can be selectively and simultaneously fabricated on the same polyethylene terephthalate (PET) substrate by tuning the types of polymer-sorted semiconducting single-walled carbon nanotube (sc-SWCNT) inks, along with low temperature growth of HfO2 thin films as shared dielectric layers. Both the p-type and n-type TFTs show good electrical properties with on/off ratio of ≈105, mobility of ≈15 cm2 V−1 s−1, and small hysteresis. Complementary metal oxide semiconductor (CMOS)-like logic gates and circuits based on as-prepared p-type and n-type TFTs have been achieved. Flexible CMOS-like inverters exhibit large noise margin of 84% at low voltage (1/2 Vdd = 1.5 V) and maximum voltage gain of 30 at Vdd of 1.5 V and low power consumption of 0.1 μW. Both of the noise margin and voltage gain are one of the best values reported for flexible CMOS-like inverters at Vdd less than 2 V. The printed CMOS-like inverters work well at 10 kHz with 2% voltage loss and delay time of ≈15 μs. A 3-stage ring oscillator has also been demonstrated on PET substrates and the oscillation frequency of 3.3 kHz at Vdd of 1 V is achieved.

Original publication

DOI

10.1002/smll.201600452

Type

Journal article

Journal

Small

Publication Date

28/09/2016

Volume

12

Pages

5066 - 5073