Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cationic polymer/DNA complexes are widely used for gene delivery, although the influence of the cationic polymer on the biophysical properties of the resulting complex is poorly understood. Here, several series of cationic polymers have been used to evaluate the influence of structural parameters on properties of DNA complexes. Parameters studied included the length of side chain, charge type (primary versus tertiary and quaternary), polymer molecular weight, and charge spacing along the polymer backbone. Cationic polymers with short side chains (such as polyvinylamine) formed small complexes, resistant to destabilization by polyanions, with low surface charge, limited transfection activity, and efficient intranuclear transcription. Conversely, cationic polymers with long side chains (e.g., poly[methacryloyl-Gly-Gly-NH-(CH(2))(6)-NH(2))] showed inefficient complex formation, high positive surface charge, and better transfection activity. The effects of molecular weight varied between polymers, for example, low molecular weight poly(L-lysine) produced relatively small complexes, whereas low molecular weight poly[2-(trimethylammonio)ethyl methacrylate chloride] produced large aggregates. Polymers containing quaternary ammonium groups showed efficient complex formation but poor transfection. Finally, spreading charges widely on the polymer structure inhibited their ability to condense DNA. In summary, to achieve small, stable complexes, the use of cationic polymers with short side chains bearing primary amino groups is suggested.

Original publication




Journal article


Bioconjug Chem

Publication Date





993 - 1004


Animals, Biophysical Phenomena, Biophysics, Cations, DNA, Electrochemistry, Electrolytes, Female, Gene Expression, Genetic Vectors, Methacrylates, Molecular Weight, Oocytes, Polylysine, Polymers, Structure-Activity Relationship, Transfection, Xenopus, beta-Galactosidase