Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Self-assembling systems based on ionic complexes of DNA with block copolymer of N-(2-hydroxypropyl)methacrylamide with 2-(trimethylammonio)ethyl methacrylate were studied as systems suitable for gene delivery. In this study, the influence of albumin and polyanion on parameters of the DNA polyelectrolyte complexes in aqueous solutions was investigated. Static and dynamic light-scattering methods were used as a main tool for characterizing these interactions. It was found that albumin is not able to release free DNA, but it can rather bind to the complexes forming ternary DNA-polycation-albumin complexes with increased hydrodynamic radii of about 10 nm. Polyanion tested, sodium poly(styrenesulfonate), was able to release free DNA in the presence of a low-molecular-weight electrolyte. In the absence of a low-molecular-weight electrolyte, only formation of ternary complexes and no DNA release was observed. The in vivo biodistribution analysis of DNA complexes showed no effect of the presence of hydrophilic nonionic poly(HPMA) on the circulatory time or organ distribution. The interaction of DNA complexes with albumin and other plasma proteins was suggested to be a major reason for the short circulatory times.

Original publication

DOI

10.1021/bc990007+

Type

Journal article

Journal

Bioconjug Chem

Publication Date

09/1999

Volume

10

Pages

764 - 772

Keywords

Animals, Cattle, DNA, Electrophoresis, Agar Gel, Light, Methacrylates, Mice, Mice, Inbred BALB C, Nucleic Acid Conformation, Polyamines, Polymers, Scattering, Radiation, Serum Albumin, Bovine, Tissue Distribution