Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Herein, we maximize the labeling efficiency of cardiac progenitor cells (CPCs) using perfluorocarbon nanoparticles (PFCE-NP) and 19F MRI detectability, determine the temporal dynamics of single-cell label uptake, quantify the temporal viability/fluorescence persistence of labeled CPCs in vitro, and implement in vivo, murine cardiac CPC MRI/tracking that could be translatable to humans. FuGENEHD-mediated CPC PFCE-NP uptake is confirmed with flow cytometry/confocal microscopy. Epifluorescence imaging assessed temporal viability/fluorescence (up to 7 days [D]). Nonlocalized murine 19F MRS and cardiac MRI studied label localization in terminal/longitudinal tracking studies at 9.4 T (D1-D8). A 4-8 fold 19F concentration increase is evidenced in CPCs for FuGENE vs. directly labeled cells. Cardiac 19F signals post-CPC injections diminished in vivo to ~31% of their values on D1 by D7/D8. Histology confirmed CPC retention, dispersion, and macrophage-induced infiltration. Intra-cardiac injections of PFCE-NP-labeled CPCs with FuGENE can be visualized/tracked in vivo for the first time with 19F MRI.

Original publication




Journal article



Publication Date





391 - 401


Cardiac stem cells, Fluorine MRI, Macrophages, Perfluorocarbon nanoparticles, Tracking, Animals, Cell Survival, Cell Tracking, Endocytosis, Female, Fluorescence, Fluorine, Fluorocarbons, Magnetic Resonance Imaging, Mice, Inbred C57BL, Myocardium, Nanoparticles, Signal-To-Noise Ratio, Stem Cells, Time Factors