Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Field electron emission properties of individual diamond cone were investigated using a customized double-probe scanning electron microscope system. The diamond cone was formed by maskless ion sputtering process in bias-assisted hot filament chemical vapor deposition system. The as-formed sharp diamond cone coated with high-sp2-content amorphous carbon exhibited high emission current of about 80 μA at an applied voltage of 100 V. The field emission was stable and well in consistent with the conventional Fowler-Nordheim emission mechanism, due to a stabilization process in surface work function. It has demonstrated the possibility of using individual diamond cone as a point electron emission source, because of its high field electron emission ability and stable surface state after the process of work function stabilization. © 2005 American Institute of Physics.

Original publication




Journal article


Applied Physics Letters

Publication Date