Real-time photolithographic technique for fabrication of arbitrarily shaped microstructures
Peng Q., Liu S., Guo Y., Chen B., Du J., Zeng Y., Zhou C., Cui Z.
A new photolithographic technique that combines the advantages of a programmable digital liquid crystal display (LCD) system and projection photolithography system to fabricate arbitrarily shaped microstructures using LCD panels as real-time masks is reported. Its principle and design method are explained. Based on a partial coherent imaging theory, the process to fabricate microaxicon arrays and zigzag gratings is simulated. The experiment has been set up using a color LCD as a real-time mask. Microaxicon arrays and zigzag gratings have been fabricated by a real-time photolithographic technique. The 3-D surface relief structures are made on panchromatic silver-halide sensitized gelatin (Kodak-131) with trypsinase etching. The pitch size of the zigzag grating is 46.26 μm, and the etching depth is 0.802 μm. The caliber of the axicon is 118.7 μm, and the etching depth is 1.332 μm. © 2003 Society of Photo-Optical Instrumentation Engineers.