Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2017, The Author(s). Background: Nuclear imaging is increasingly being used in the diagnostic work-up of idiopathic inflammatory myopathy (IIM). Increased muscular uptake of technetium-99m-pyrophosphate (99mTc-PYP) has hitherto been assessed qualitatively by planar scintigraphy. We set out to perform quantitative tomographic scintigraphy in IIM. Results: Ninety IIM patients and 48 control subjects underwent 99mTc-PYP single-photon emission computed tomography (SPECT)/CT of the upper and lower body. Scans were evaluated visually by an intensity score (1–4) and quantitatively by the mean standardized uptake value (SUVmean) in thigh muscles after semi-automated segmentation of these. Furthermore, a SUVmean gradient down along the thighs was determined by linear regression of the slice-by-slice activity. Interobserver analyses were performed on qualitative evaluations. Compared to controls, patients more often had a high intensity score (p < 0.0001), but interobserver analyses revealed only moderate agreement. The thigh muscular 99mTc-PYP activity (SUVmean) was 60% higher in patients than in controls, p < 0.0001, albeit with a wide range. There was an activity gradient down the thigh muscle, the proximal tracer uptake being highest, and this gradient was steeper in patients than in controls; the activity decreased by 0.00024 and 0.00010 SUVmean mm−1, respectively, along the thighs. Conclusions: The muscular uptake of 99mTc-PYP was significantly higher in patients than in healthy controls by qualitative and quantitative assessment. The tracer uptake was higher in the proximal than in the distal part of the thigh muscle, and SUVmean gradients differed between groups. Hence, tomographic nuclear imaging allowing for quantification of the 99mTc-PYP uptake might contribute to the diagnosis of IIM, and SPECT/CT of the lower body might suffice.

Original publication




Journal article


EJNMMI Research

Publication Date