Frequency and signature of somatic variants in 1461 human brain exomes.
Wei W., Keogh MJ., Aryaman J., Golder Z., Kullar PJ., Wilson I., Talbot K., Turner MR., McKenzie C-A., Troakes C., Attems J., Smith C., Sarraj SA., Morris CM., Ansorge O., Jones NS., Ironside JW., Chinnery PF.
PURPOSE: To systematically study somatic variants arising during development in the human brain across a spectrum of neurodegenerative disorders. METHODS: In this study we developed a pipeline to identify somatic variants from exome sequencing data in 1461 diseased and control human brains. Eighty-eight percent of the DNA samples were extracted from the cerebellum. Identified somatic variants were validated by targeted amplicon sequencing and/or PyroMark® Q24. RESULTS: We observed somatic coding variants present in >10% of sampled cells in at least 1% of brains. The mutational signature of the detected variants showed a predominance of C>T variants most consistent with arising from DNA mismatch repair, occurred frequently in genes that are highly expressed within the central nervous system, and with a minimum somatic mutation rate of 4.25 × 10-10 per base pair per individual. CONCLUSION: These findings provide proof-of-principle that deleterious somatic variants can affect sizeable brain regions in at least 1% of the population, and thus have the potential to contribute to the pathogenesis of common neurodegenerative diseases.