Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The fundamental role of apoptosis in tumor prevention and the important role of p53 in this process are now universally recognized. Recently, several families of p53-binding proteins have been shown to influence p53's decision to direct the cells either into the apoptotic pathway or in cell cycle arrest. Among them, the ASPP family specifically regulate p53-dependent apoptosis. Its member ASPP2 was discovered more than 10 years ago as a binding partner of p53 and its role as a positive regulator of p53 mediated apoptosis has been clearly established in vitro. However, its physiological importance in vivo has just emerged through the generation and characterisation of the ASPP2-deficient mice. We now know that ASPP2 is a haploinsufficient tumor suppressor and an important activator of p53 during mouse development and tumor suppression in vivo. ASPP2 might be a novel target for future cancer therapy.

Original publication




Journal article


Cell Cycle

Publication Date





2187 - 2190


Animals, Apoptosis, Humans, Mice, Tumor Suppressor Protein p53, Tumor Suppressor Proteins