Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The transcriptional repressor Blimp-1 originally cloned as a silencer of type I interferon (IFN)-β gene expression controls cell fate decisions in multiple tissue contexts. Conditional inactivation in the mammary gland was recently shown to disrupt epithelial cell architecture. Here we report that Blimp-1 regulates expression of viral defense, IFN signaling and MHC class I pathways, and directly targets the transcriptional activator Stat1. Blimp-1 functional loss in 3D cultures of mammary epithelial cells (MECs) results in accumulation of dsRNA and expression of type III IFN-λ. Cultures treated with IFN lambda similarly display defective lumen formation. These results demonstrate that type III IFN-λ profoundly influences the behavior of MECs and identify Blimp-1 as a critical regulator of IFN signaling cascades.

Original publication

DOI

10.1038/s41598-017-18652-9

Type

Journal article

Journal

Sci Rep

Publication Date

10/01/2018

Volume

8

Keywords

Animals, Epithelial Cells, Female, Gene Expression Profiling, Gene Expression Regulation, Gene Silencing, Interferons, Mice, Mice, Knockout, Positive Regulatory Domain I-Binding Factor 1, Protein Binding, RNA, Double-Stranded, STAT1 Transcription Factor, Signal Transduction