Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The CRISPR/Cas9 system of genome editing has revolutionized molecular biology, offering a simple, and relatively inexpensive method of creating precise DNA edits. It has potential application in gene therapy treatment of retinal diseases providing targeted disruption, alteration, or transcriptional regulation of pathogenic genes. In vivo studies have demonstrated therapeutic benefit for a variety of diseases. Despite this, there are many challenges to clinical use of CRISPR/Cas9, including editing efficiency, off-target effects, and disease heterogeneity. This review details the mechanisms of the CRISPR/Cas9 system and the treatment strategies that can be applied to retinal diseases. It gives an overview of in vivo studies published to date and discusses the challenges and potential solutions to the wide-scale clinical use of CRISPR/Cas9 as a therapeutic intervention.


Journal article


Yale J Biol Med

Publication Date





533 - 541


CRISPR, Cas9, HDR, NHEJ, gene editing, gene therapy, retinal disease, sgRNA, CRISPR-Cas Systems, Gene Editing, Gene Silencing, Genetic Therapy, Humans, Mutation, Retinal Diseases, Stem Cells