Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Parkinson's disease is the second most common neurodegenerative disorder, with only partial symptomatic therapy and no mechanism-based therapies. The accumulation and aggregation of α-synuclein is causatively linked to the sporadic form of the disease, which accounts for 95% of cases. The pathology is a result of a gain of toxic function of misfolded α-synuclein conformers, which can template the aggregation of soluble monomers and lead to cellular dysfunction, at least partly by interfering with membrane fusion events at synaptic terminals. Here, we discuss the transcellular propagation and intracellular trafficking of α-synuclein and posit that endosomal processing could be a point of convergence between these two routes. Understanding these events will clarify the therapeutic potential of enzymes that regulate protein trafficking and degradation in synucleinopathies.

Original publication




Journal article


Cold Spring Harb Perspect Med

Publication Date





Animals, Disease Models, Animal, Humans, Parkinson Disease, Protein Transport, SNARE Proteins, alpha-Synuclein