Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Differentiation of lineage-committed cells from multipotent progenitors requires the establishment of accessible chromatin at lineage-specific transcriptional enhancers and promoters, which is mediated by pioneer transcription factors that recruit activating chromatin remodeling complexes. Here we show that the Mbd3/nucleosome remodeling and deacetylation (NuRD) chromatin remodeling complex opposes this transcriptional pioneering during B cell programming of multipotent lymphoid progenitors by restricting chromatin accessibility at B cell enhancers and promoters. Mbd3/NuRD-deficient lymphoid progenitors therefore prematurely activate a B cell transcriptional program and are biased toward overproduction of pro-B cells at the expense of T cell progenitors. The striking reduction in early thymic T cell progenitors results in compensatory hyperproliferation of immature thymocytes and development of T cell lymphoma. Our results reveal that Mbd3/NuRD can regulate multilineage differentiation by constraining the activation of dormant lineage-specific enhancers and promoters. In this way, Mbd3/NuRD protects the multipotency of lymphoid progenitors, preventing B cell-programming transcription factors from prematurely enacting lineage commitment. Mbd3/NuRD therefore controls the fate of lymphoid progenitors, ensuring appropriate production of lineage-committed progeny and suppressing tumor formation.

Original publication

DOI

10.1084/jem.20161827

Type

Journal article

Journal

The Journal of Experimental Medicine

Publication Date

10/2017

Volume

214

Pages

3085 - 3104

Addresses

Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, England, UK.

Keywords

B-Lymphocytes, Lymphocytes, Multipotent Stem Cells, Animals, Mice, Inbred C57BL, Mice, Lymphoma, T-Cell, DNA-Binding Proteins, Transcription Factors, Cell Differentiation, Gene Expression Regulation, Cell Lineage, Mi-2 Nucleosome Remodeling and Deacetylase Complex, Thymocytes, Carcinogenesis