Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Understanding how some animals are immortal and avoid the ageing process is important. We currently know very little about how they achieve this. Research with genetic model systems has revealed the existence of conserved genetic pathways and molecular processes that affect longevity. Most of these established model organisms have relatively short lifespans. Here we consider the use of planarians, with an immortal life-history that is able to entirely avoid the ageing process. These animals are capable of profound feats of regeneration fueled by a population of adult stem cells called neoblasts. These cells are capable of indefinite self-renewal that has underpinned the evolution of animals that reproduce only by fission, having disposed of the germline, and must therefore be somatically immortal and avoid the ageing process. How they do this is only now starting to be understood. Here we suggest that the evidence so far supports the hypothesis that the lack of ageing is an emergent property of both being highly regenerative and the evolution of highly effective mechanisms for ensuring genome stability in the neoblast stem cell population. The details of these mechanisms could prove to be very informative in understanding how the causes of ageing can be avoided, slowed or even reversed.

Original publication

DOI

10.1016/j.semcdb.2017.08.028

Type

Journal article

Journal

Seminars in cell & developmental biology

Publication Date

10/2017

Volume

70

Pages

108 - 121

Addresses

Department of Zoology, South Parks Road, University of Oxford, Oxford OX1 3PS, UK.