Adenosine production and energy metabolism in ischaemic and metabolically stimulated rat heart.
Headrick J., Clarke K., Willis RJ.
Adenosine may modulate blood flow and electrical activity in heart in response to changes in myocardial energy metabolism. In the present study, 31P NMR spectroscopy was used to examine the relation between cytosolic phosphate metabolite levels and release of adenosine into the venous effluent of isovolumic heart during graded low-flow ischaemia or metabolic stimulation with isoproterenol. When coronary flow rate was varied in steps between 1.6 and 12 ml/min/g, cytosolic ATP levels did not change significantly but the phosphorylation potential exhibited a linear correlation with flow rate below approximately 7 ml/min/g. Purine release (adenosine and inosine) correlated linearly with the cytosolic phosphorylation potential and free AMP concentration. Metabolic stimulation of hearts with isoproterenol (0.4, 3.0, and 60 nM), produced a significant fall in cytosolic ATP levels and decreased the cytosolic phosphorylation potential. Purine release in these hearts increased exponentially as the cytosolic phosphorylation potential dropped, and as cytosolic free AMP increased. These results support a link between the phosphorylation potential and the mechanism of adenosine production during ischaemia and metabolic stimulation. Presumably, this link is the activity of the enzyme 5'-nucleotidase, which is responsible for converting AMP to adenosine, together with the concentration of its substrate, AMP. In low-flow ischaemia, cytosolic AMP may control adenosine formation. With isoproterenol stimulation, a more complex relationship exists, indicating possible allosteric regulation of the enzyme(s) responsible for adenosine formation, in addition to changes in AMP concentration.