Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The addition of cryopreservative agents (CPAs) to chondrocytes and natural and engineered cartilage is critical to protect the cells and tissues from freezing damage during cryopreservation, but this may cause cell damage, e.g. by osmotic shock. The damage could be minimized by the control of the cell volume excursion with the knowledge of cell membrane permeability. In this study, the cell volume responses of chondrocytes to three commonly used CPAs were evaluated using a perfusion microscope stage. The osmotic response of chondrocytes was measured to the perfusion with 1.4 M dimethyl sulfoxide (Me2SO), 1,2-propanediol and glycerol at 21 degrees C. Cell volumes and their transients were determined with image analysis. The cell membrane permeability parameters, including the hydraulic conductivity (Lp), the CPA permeability (omega) and the reflection coefficients (sigma) in the Kedem-Katchalsky (K-K) model, and the Lp and omega in the two-parameter model were determined. The correlated K-K parameters at 21 degrees C were Lp=0.166 +/- 0.035, 0.149 +/- 0.061, 0.212 +/- 0.041 microm/min atm, omega=(7.630 +/- 0.174) x 10(-2), (1.428 +/- 0.627) x 10(-2), (2.744 +/- 0.775) x 10(-2) microm/s and sigma=0.91 +/- 0.09, 0.82 +/- 0.11, 0.88 +/- 0.10 for Me(2)SO, glycerol and 1,2-propanediol, respectively. For the two-parameter model, the parameter values were Lp=0.163 +/- 0.040, 0.128 +/- 0.031, 0.169 +/- 0.025 microm/min atm, omega=(7.881 +/- 0.178) x 10(-2), (1.529 +/- 0.525) x 10(-2), (3.716 +/- 0.493) x 10(-2) microm/s for Me2SO, glycerol and 1,2-propanediol, respectively. No significant difference in the predictions of cell volume excursion during CPA addition was observed when using either the K-K model or the two-parameter model and it was hence advised to adopt the simple two-parameter model in the evaluation. The measured parameters can be used to optimise the CPA addition and removal protocols to maximize the cell survival during cryopreservation.

Original publication

DOI

10.1016/s1350-4533(03)00073-0

Type

Journal article

Journal

Med Eng Phys

Publication Date

09/2003

Volume

25

Pages

573 - 579

Keywords

Animals, Cattle, Cell Membrane Permeability, Cell Size, Cell Survival, Cells, Cultured, Chondrocytes, Cold Temperature, Computer Simulation, Cryopreservation, Cryoprotective Agents, Dimethyl Sulfoxide, Glycerol, In Vitro Techniques, Models, Biological, Propylene Glycol