Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Estimation of thermodynamic and kinetic parameters in electrochemical studies is usually undertaken via comparison of the experimental results with theory based on a model that mimics the experiment. The present study examines the credibility of transient d.c. and a.c. voltammetric theory-experiment comparisons for recovery of the parameters needed to model the ubiquitous mechanism when an electron transfer (E) reaction is followed by a chemical (C) step in the EC process ([Formula: see text]). The data analysis has been undertaken using optimization methods facilitated in some cases by grid computing. These techniques have been applied to the simulated (5% noise added) and experimental (reduction of trans-stilbene) voltammograms to assess the capabilities of parameter recovery of E(0) (reversible potential for the E step), k(0) (heterogeneous electron transfer rate constant at E(0)), α (charge transfer coefficient for the E step), and k(f) and k(b) (forward and backward rate constants for the C step) under different kinetic regimes. The advantages provided by the use of a.c. instead of d.c. voltammetry and data optimization methods over heuristic approaches to "experiment"-theory comparisons are discussed, as are the limitations in the efficient recovery of a unique set of parameters for the EC mechanism. In the particular experimental case examined herein, results for the protonation of the electrochemically generated stilbene dianion demonstrate that, notwithstanding significant advances in experiment and theory of voltammetric analysis, reliable recovery of the parameters for the EC mechanism with a fast chemical process remains a stiff problem.

Type

Journal article

Journal

Analytical chemistry

Publication Date

05/2016

Volume

88

Pages

4724 - 4732

Addresses

School of Chemistry, Monash University , Clayton, Victoria 3800, Australia.