Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We examine the effect of prescribed wall-driven oscillations of a flexible tube of arbitrary cross-section, through which a flow is driven by prescribing either a steady flux at the downstream end or a steady pressure difference between the ends. A large-Womersley-number large-Strouhal-number regime is considered, in which the oscillations of the wall are small in amplitude, but sufficiently rapid to ensure viscous effects are confined to a thin boundary layer. We derive asymptotic expressions for the flow fields and evaluate the energy budget. A general result for the conditions under which there is zero net energy transfer from the flow to the wall is provided. This is presented as a critical inverse Strouhal number (a dimensionless measure of the background flow rate) which is expressed only in terms of the tube geometry, the fluid properties and the profile of the prescribed wall oscillations. Our results identify an essential component of a fundamental mechanism for self-excited oscillations in three-dimensional collapsible tube flows, and enable us to assess how geometric and flow properties affect the stability of the system. © 2010 Cambridge University Press.

Original publication

DOI

10.1017/S0022112009992904

Type

Journal article

Journal

Journal of Fluid Mechanics

Publication Date

10/04/2010

Volume

648

Pages

83 - 121