Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The RAG1 and RAG2 proteins are the only lymphoid-specific factors required to perform the first step of V(D)J recombination, DNA cleavage. While the catalytic domain of RAG1, the core region, has been well characterized, the role of the noncore region in modulating chromosomal V(D)J recombination efficiency remains ill defined. Recent studies have highlighted the role of chromatin structure in regulation of V(D)J recombination. Here we show that RAG1 itself, through a RING domain within its N-terminal noncore region, preferentially interacts directly with and promotes monoubiquitylation of histone H3. Mutations affecting the RAG1 RING domain reduce histone H3 monoubiquitylation activity, decrease V(D)J recombination activity in vivo, reduce formation of both signal-joint and coding-joint products on episomal substrates, and decrease efficiency of V(D)J recombination at the endogenous IgH locus in lymphoid cells. The results reveal that RAG1-mediated histone monoubiquitylation activity plays a role in regulating the joining phase of chromosomal V(D)J recombination.

Original publication

DOI

10.1016/j.molcel.2009.12.035

Type

Journal article

Journal

Mol Cell

Publication Date

29/01/2010

Volume

37

Pages

282 - 293

Keywords

Binding Sites, Cell Line, Chromatin, Histones, Homeodomain Proteins, Humans, Mutagenesis, Site-Directed, RING Finger Domains, Recombination, Genetic, Ubiquitination