Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The differentiation of human pluripotent stem cells to the B-cell lymphoid lineage has important clinical applications that include in vitro modeling of developmental lymphogenesis in health and disease. Here, we first demonstrate the capacity of human induced pluripotent stem cells (hiPSCs) to differentiate into CD144(+)CD73(-)CD43/CD235a(-) cells, characterized as hemogenic endothelium, and show that this population is capable of differentiating to CD10(+)CD19(+) B lymphocytes. We also demonstrate that B lymphocytes generated from hiPSCs are able to undergo full VDJ rearrangement and express surface IgM (sIgM(+)), thus representing an immature B-cell subset. Efficiency of sIgM expression on the hiPSC-derived B lymphocytes (∼ 5% of CD19(+) cells) was comparable with B lymphocytes generated from human umbilical cord blood (UCB) hematopoietic progenitor cells. Importantly, when assessed by global transcriptional profiling, hiPSC-derived B-cells show a very high level of similarity when compared with their UCB-derived counterparts, such that from more than 47,000 different transcripts, only 45 were significantly different (with a criteria adjusted P value P<0.05, log FC >1.5 or 2.8-fold). This represents a unique in vitro model to delineate critical events during lymphogeneisis in development and lymphoid diseases such as acute lymphocytic leukemia.

Original publication




Journal article


Stem Cells Dev

Publication Date





1082 - 1095


Antigens, CD, B-Lymphocytes, Cells, Cultured, Endothelial Progenitor Cells, Humans, Immunoglobulin M, Induced Pluripotent Stem Cells, Lymphopoiesis, Transcriptome, V(D)J Recombination