Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The type II transforming growth factor (TGF)-beta receptor gene (TGFBR2) is often mutated in nucleotide repeat sequences in colorectal cancers that are replication error positive (RER+). These mutations are thought to be selected for escape from growth inhibition by TGF-beta rather than representing bystander events because of an increased mutation rate. We investigated the role of TGFBR2 mutations in 12 colorectal cancer cell lines. Six of these were RER+, and these were shown to have homozygous TGFBR2 mutations. All cell lines then were tested for changes in proliferation in response to TGF-beta stimulation. Despite homozygous mutation of the type II TGF-beta receptor, two RER+ cell lines, Lovo and SW48, showed statistically significant growth inhibition when stimulated by TGF-beta1 in serum-free conditions. This shows that the type II TGF-beta receptor can be bypassed in certain cases to maintain growth inhibition. We next investigated whether there was any alternative mode through which TGFBR2 mutation may give a selective advantage, such as a change in adhesion molecule expression. All cell lines were stimulated with TGF-beta1 and adhesion molecules detected by ELISA. No consistent changes were identified between the RER+ and the RER- cell lines, although changes in E-cadherin, beta-catenin, and gamma-catenin were identified in individual cell lines. We conclude that (i) type II TGF-beta receptor activity can be bypassed and thus TGFBR2 mutations in RER+ cancers may, at least sometimes, be just "bystander" events and (ii) TGF-beta can affect adhesion molecule expression so that TGFBR2 mutation may give rise to a selective advantage through an effect other escape from growth inhibition.

Original publication

DOI

10.1073/pnas.96.6.3087

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

16/03/1999

Volume

96

Pages

3087 - 3091

Keywords

Cell Adhesion, Cell Adhesion Molecules, Cell Division, Colorectal Neoplasms, Gene Expression Regulation, Neoplastic, Humans, Mutation, Receptors, Transforming Growth Factor beta, Transforming Growth Factor beta, Tumor Cells, Cultured