Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recent years have witnessed a progressive acceptance of the dual role played by dendritic cells (DC) in the initiation of immune responses and their specific attenuation through the induction of immunological tolerance. Nevertheless, as terminally differentiated cells of the myeloid lineage, DC share with macrophages an inherent resistance to genetic modification, greatly restricting strategies available for studying their physiology and function. Consequently, little is known of the molecular interactions provided by DC that underlie the critical decision between tolerance and immunity. Embryonic stem (ES) cells are, by contrast, relatively amenable to genetic modification. Furthermore, their propensity for self-renewal, one of the cardinal features of a stem cell, permits cloning at the single cell level and the rational design of ES cell lines, uniformly expressing a desired, mutant phenotype. Here, we describe how another defining property of ES cells, their demonstrable pluripotency, may be harnessed for their directed differentiation along the DC pathway, enabling the generation of limitless numbers of DC faithfully expressing candidate genes of interest. The protocols we outline in this chapter may, therefore, offer new opportunities for dissecting the biology of DC and the molecular basis of their unique properties.

Original publication

DOI

10.1007/978-1-59745-395-0_4

Type

Journal article

Journal

Methods Mol Biol

Publication Date

2007

Volume

380

Pages

59 - 72

Keywords

Animals, Cell Differentiation, Clone Cells, Coculture Techniques, Dendritic Cells, Embryonic Stem Cells, Transfection