Stress fermentation strategies for the production of hyperthermostable superoxide dismutase from Thermus thermophilus HB27: effects of ions.
Zhu H., Liu J., Qu J., Gao X., Pan T., Cui Z., Zhao X., Lu JR.
In this study, we explored how ammonium and metal ion stresses affected the production of recombinant hyperthermostable manganese superoxide dismutase (Mn-SOD). To improve Mn-SOD production, fed-batch culture in shake flasks and bioreactor fermentation were undertaken to examine the effects of [Formula: see text] and Mn(2+) feeding. Under the optimized feeding time and concentrations of [Formula: see text] and Mn(2+), the maximal SOD activity obtained from bioreactor fermentation reached some 480 U/ml, over 4 times higher than that in batch cultivation (113 U/ml), indicating a major enhancement of the concentration of Mn-SOD in the scale-up of hyperthermostable Mn-SOD production. In contrast, when the fed-batch culture with appropriate [Formula: see text] and Mn(2+) feeding was carried out in the same 5-L stirred tank bioreactor, a maximal SOD concentration of some 450 U/ml was obtained, again indicating substantial increase in SOD activity as a result of [Formula: see text] and Mn(2+) feeding. The isoelectric point (pI) of the sample was found to be 6.2. It was highly stable at 90 °C and circular dichroism measurements indicated a high α-helical content of 70 % as well, consistent with known SOD properties. This study indicates that [Formula: see text] and Mn(2+) play important roles in Mn-SOD expression. Stress fermentation strategies established in this study are useful for large-scale efficient production of hyperthermostable Mn-SOD and may also be valuable for the scale-up of other extremozymes.