Expression of myelin proteins in the opossum optic nerve: late appearance of inhibitors implicates an earlier non-myelin factor in preventing ganglion cell regeneration.
MacLaren RE.
The pattern of appearance of myelin-associated proteins in the visual system of the Brazilian opossum Monodelphis domestica is described. Whole mounts of optic nerve, chiasm, and optic tract were sectioned horizontally and incubated with antibodies to myelin basic protein (MBP), proteolipid protein (PLP), myelin-associated glycoprotein (MAG), "Rip," and the neurite inhibitory protein (IN-1), followed by visualization with diaminobenzidine and a peroxidase-conjugated secondary antibody. PLP is first detectable 24 days after birth (P24) at the centre of the optic chiasm. MBP, MAG, Rip, and IN-1 appear first in the same area at P26. By P28 the distribution of all proteins is similar, occupying the entire chiasm, optic tracts, and prechiasmatic portion of the optic nerves. Protein expression progresses along the optic nerve to reach the lamina cribrosa by P34, coincident with the time of eye opening. A critical period in which the retinofugal pathway has a regenerative capacity has recently been observed in Monodelphis. This period ends at P12, 2 weeks before the appearance of the myelin-associated inhibitory proteins MAG and IN-1. These results therefore suggest that regeneration in the developing retinofugal projection of the opossum is restricted by an earlier non-myelin factor, which is in contrast to current literature on the spinal cord.