Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The effect of the structure of the organic precursor molecule on the electroinsertion of anions and on the formation of materials in the ionic liquid state is compared for three compounds, para-N, N, N′, N′-tetrahexylphenylenediamine (p-THPD), meta-N, N, N′, N′-tetrahexylphenylene diamine (m-THPD), and para-N, N, N′, N′-tetrakis(6-methoxyhexyl)phenylenediamine (p-TMHPD), by characterising their condensed phase voltammetric properties in aqueous media. The electrochemically driven anion insertion in p-THPD and p-TMHPD in the presence of ClO4-, F-, Cl-, Br-, I-, and SO42- is shown to be extremely sensitive to structure. The introduction of the methoxy end groups in p-TMHPD causes (1) a considerable shift to more negative electroinsertion potentials, (2) a less stable response which upon continuous cycling decreases, and (3) considerably lower anion selectivity. For the insertion of sulfate, only p-TMHPD yields an electrochemical response which is shown to be consistent with insertion of the dianion SO42-. The electrochemical oxidation of a deposit of m-THPD is accompanied by anion insertion and a chemical reaction step in an EC-type electrochemical process. The product of the chemical step is electrochemically active and results in a new reversible electroinsertion process. Starting materials and products of the microdroplet reactions are characterised by Maldi-TOF mass spectrometry and a reaction mechanism based on condensed phase polymerisation is proposed.

Original publication

DOI

10.1007/s100089900106

Type

Journal article

Journal

Journal of Solid State Electrochemistry

Publication Date

01/12/2001

Volume

5

Pages

17 - 22