Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Analysis of anteroposterior (AP) axis specification in regenerating planarian flatworms has shown that Wnt/β-catenin signaling is required for posterior specification and that the FGF-like receptor molecule nou-darake (ndk) may be involved in restricting brain regeneration to anterior regions. The relationship between re-establishment of AP identity and correct morphogenesis of the brain is, however, still poorly understood. Here we report the characterization of two axin paralogs in the planarian Schmidtea mediterranea. Although Axins are well known negative regulators of Wnt/β-catenin signaling, no role in AP specification has previously been reported for axin genes in planarians. We show that silencing of Smed-axin genes by RNA interference (RNAi) results in two-tailed planarians, a phenotype previously reported after silencing of Smed-APC-1, another β-catenin inhibitor. More strikingly, we show for the first time that while early brain formation at anterior wounds remains unaffected, subsequent development of the brain is blocked in the two-tailed planarians generated after silencing of Smed-axin genes and Smed-APC-1. These findings suggest that the mechanisms underlying early brain formation can be uncoupled from the specification of AP identity by the Wnt/β-catenin pathway. Finally, the posterior expansion of the brain observed following Smed-ndk RNAi is enhanced by silencing Smed-APC-1, revealing an indirect relationship between the FGFR/Ndk and Wnt/β-catenin signaling systems in establishing the posterior limits of brain differentiation.

Original publication




Journal article


Dev Biol

Publication Date





68 - 78


Animals, Axin Protein, Body Patterning, Brain, Cell Differentiation, Cell Polarity, In Situ Hybridization, Nerve Regeneration, Planarians, Polymerase Chain Reaction, RNA Interference, Signal Transduction, Wnt Proteins, beta Catenin