Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Regulatory T cell (Treg) therapy for immune modulation is a promising therapeutic strategy for the treatment and prevention of autoimmune disease and graft-versus-host disease (GvHD) after bone marrow transplantation. However, Treg are heterogeneous and express a variety of chemokine receptor molecules. The optimal subpopulation of Treg for therapeutic use may vary according to the pathological target. Indeed, clinical trials of Treg for the prevention of GvHD where the skin is a major target of the anti-host response have employed Treg derived from a variety of different sources. We postulated that for the effective treatment of GvHD-related skin pathology, Treg must be able to migrate to skin in order to regulate local alloimmune responses efficiently. To test the hypothesis that different populations of Treg display distinct efficacy in vivo based on their expression of tissue-specific homing molecules, we evaluated the activity of human Treg derived from two disparate sources in a model of human skin transplantation. Treg were derived from adult blood or cord blood and expanded in vitro. While Treg from both sources displayed similar in vitro suppressive efficacy, they exhibited marked differences in the expression of skin homing molecules. Importantly, only adult-derived Treg were able to prevent alloimmune-mediated human skin destruction in vivo, by virtue of their improved migration to skin. The presence of Treg within the skin was sufficient to prevent its alloimmune-mediated destruction. Additionally, Treg expressing the skin homing cutaneous lymphocyte antigen (CLA) were more efficient at preventing skin destruction than their CLA-deficient counterparts. Our findings highlight the importance of the careful selection of an effective subpopulation of Treg for clinical use according to the pathology of interest.

Original publication




Journal article


PLoS One

Publication Date





Adult, Animals, Autoimmune Diseases, Cell Movement, Cell- and Tissue-Based Therapy, Graft vs Host Disease, Humans, Mice, Mice, Inbred BALB C, Skin, T-Lymphocytes, Regulatory