Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The ammonium-directed olefinic epoxidations of a range of differentially N-substituted cyclic allylic and homoallylic amines (derived from cyclopentene, cyclohexene, and cycloheptene) have been investigated, and the reaction kinetics have been analyzed. The results of these studies suggest that both the ring size and the identity of the substituents on nitrogen are important in determining both the overall rate and the stereochemical outcome of the epoxidation reaction. In general, secondary amines or tertiary amines with nonsterically demanding substituents on nitrogen are superior to tertiary amines with sterically demanding substituents on nitrogen in their ability to promote the oxidation reaction. Furthermore, in all cases examined, the ability of the (in situ formed) ammonium substituent to direct the stereochemical course of the epoxidation reaction is either comparable or superior to that of the analogous hydroxyl substituent. Much slower rates of ring-opening of the intermediate epoxides are observed in cyclopentene-derived and cycloheptene-derived allylic amines as compared with their cyclohexene-derived allylic and homoallylic amine counterparts, allowing for isolation of these intermediates in both of the former cases.

Original publication

DOI

10.1021/jo3010556

Type

Journal article

Journal

J Org Chem

Publication Date

07/09/2012

Volume

77

Pages

7241 - 7261

Keywords

Alkenes, Epoxy Compounds, Kinetics, Molecular Structure, Quaternary Ammonium Compounds, Stereoisomerism