Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Random walk models based on an exclusion process with contact effects are often used to represent collective migration where individual agents are affected by agent-to-agent adhesion. Traditional mean-field representations of these processes take the form of a nonlinear diffusion equation which, for strong adhesion, does not predict the averaged discrete behavior. We propose an alternative suite of mean-field representations, showing that collective migration with strong adhesion can be accurately represented using a moment closure approach.

Original publication

DOI

10.1103/PhysRevE.85.051922

Type

Journal article

Journal

Phys Rev E Stat Nonlin Soft Matter Phys

Publication Date

05/2012

Volume

85

Keywords

Adhesiveness, Diffusion, Models, Theoretical, Motion