Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A total of 267 families with two or more siblings with multiple sclerosis (MS) were genotyped with 14 restriction fragment length polymorphisms at the TCR beta locus. A nonparametric linkage analysis of the data showed no evidence for linkage to this locus (mlod=0.11). No significant allelic or haplotype transmissions were observed in the total sample of 565 patients. After stratification for the presence of HLA DRB1*15, an association was observed between the BV25S1*1-BV26S1*1-BV2S1*1 haplotype and MS (P=0.00089). This was not significant upon correction for multiple comparisons. It was also not significant when the haplotype frequency in affected individuals was compared to a normal control sample (P=0.77). Furthermore, the associated haplotype was followed-up in an independent sample of 97 nuclear families with a single DRB1*15-positive child with MS. The BV25S1*1-BV26S1*1-BV2S1*1 haplotype did not show significant evidence for transmission distortion but the same trend was seen (P=0.21). There were no significant associations observed in the DRB1*15-negative patients and no detectable difference was seen in the DRB1*15-positive BV25S1*1-BV26S1*1-BV2S1*1 association when comparing different subgroups based on clinical course of MS. These results show no evidence for linkage and fail to establish an association between MS susceptibility and the TCR beta locus.

Original publication

DOI

10.1038/sj.gene.6364091

Type

Journal article

Journal

Genes Immun

Publication Date

08/2004

Volume

5

Pages

337 - 342

Keywords

Female, Genes, T-Cell Receptor beta, HLA-DR Antigens, HLA-DRB1 Chains, Humans, Linkage Disequilibrium, Male, Multiple Sclerosis, Polymorphism, Restriction Fragment Length