Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The cannabinoid agonist, HU210 has been evaluated in vivo in nociceptive and inflammatory pain models in the rat. The ED50 for the anti-nociceptive (increasing mechanical withdrawal threshold) effect was 0.1 mg/kg-1 i.p., and for anti-hypersensitivity and anti-inflammatory activity was 5 g/kg-1 i.p. (in the carrageenan model). The selective CB1 antagonist, AM281 (0.5 microg/kg-1 i.p.) reversed effects of HU210 (10 and 30 microg/kg-1 i.p.) in both nociceptive and inflammatory models of hypersensitivity. The selective CB2 antagonist, SR144528 (1 mg/kg-1 i.p.) antagonised effects of HU210 (30 microg/kg-1 i.p.) in the carrageenan induced inflammatory hypersensitivity. The CB2 agonist, 1-(2,3-Dichlorobenzoyl)-5-methoxy-2-methyl-(2-(morpholin-4-yl)ethyl)-1H-indole (GW405833) inhibited the hypersensitivity and was anti-inflammatory in vivo. These effects were blocked by SR144528. These findings suggest that CB1 receptors are involved in nociceptive pain and that both CB1 and CB2 receptors are involved in inflammatory hypersensitivity. Future studies will investigate effects on identified inflammatory cells within the inflamed tissue to further elucidate the role of cannabinoid receptors.

Original publication




Journal article



Publication Date





253 - 260


Acute Disease, Animals, Camphanes, Cannabinoids, Carrageenan, Dronabinol, Hypersensitivity, Indoles, Male, Morpholines, Neurogenic Inflammation, Nociceptors, Pain, Pyrazoles, Rats, Rats, Inbred Strains, Receptor, Cannabinoid, CB2, Receptors, Cannabinoid, Receptors, Drug