Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Familial exudative vitreoretinopathy (FEVR) is an inherited disorder that disrupts the development of the retinal vasculature and can result in blindness. FEVR is genetically heterogeneous and mutations in four genes, NDP, FZD4, LRP5, and TSPAN12, encoding components of a novel ligand-receptor complex that activates the Norrin-β-catenin signaling pathway, account for approximately 50% of cases. We recently identified mutations in TSPAN12 as a cause of dominant FEVR. The purpose of this study was to identify recessive TSPAN12 mutations in FEVR patients. METHODS: Mutation screening was performed by directly sequencing PCR products generated from genomic DNA with primers designed to amplify the coding sequence of TSPAN12. Splicing defects were verified by reverse transcriptase PCR of leukocyte cDNA. RESULTS: TSPAN12 screening in a large dominant FEVR family unexpectedly led to the identification of homozygous mutations in severely affected family members, whereas mildly affected family members were heterozygous. Further screening in a cohort of 10 retinal dysplasia/severe FEVR patients identified an additional three cases with recessive TSPAN12 mutations. In all examined cases, single mutation carriers were mildly affected compared to patients harboring two TSPAN12 mutations. CONCLUSIONS: We report for the first time recessive mutations in TSPAN12 and describe the first genetic cause for the clinical variation seen in FEVR families. Our data raise the possibility that patients with severe FEVR actually may harbor two mutant alleles, derived either from the same gene or potentially from other genes encoding components of the Norrin-β-catenin signaling pathway.

Original publication

DOI

10.1167/iovs.11-8629

Type

Journal article

Journal

Invest Ophthalmol Vis Sci

Publication Date

14/05/2012

Volume

53

Pages

2873 - 2879

Keywords

DNA Mutational Analysis, Female, Genes, Recessive, Humans, Male, Mutation, Missense, Pedigree, RNA, Messenger, Retinal Dysplasia, Tetraspanins, Vitreoretinopathy, Proliferative