Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Because of the scarcity of megakaryocytes in hematopoietic tissues, studying megakaryopoiesis heavily relies on the availability of appropriate cellular models. Here, we report the establishment of a new mouse embryonic stem (ES) cell-derived megakaryocytic cell line, MKD1. The cells are factor-dependent, their cell surface immunophenotype and gene expression profile closely resemble that of primary megakaryocyte progenitors (MkPs) and they further differentiate along the megakaryocyte lineage upon valproic acid treatment. At a functional level, we show that ablation of SCL expression, a transcription factor critical for MkP maturation, leads to gene expression alterations similar to that observed in primary, Scl-excised MkPs. Moreover, the cell line is amenable to biochemical and transcriptional analyses, as we report for GpVI, a direct target of SCL. Thus, the MKD1 cell line offers a pertinent experimental model to study the cellular and molecular mechanisms underlying MkP biology and more broadly megakaryopoiesis.

Original publication

DOI

10.1371/journal.pone.0032981

Type

Journal article

Journal

PLoS One

Publication Date

2012

Volume

7

Keywords

Animals, Cell Culture Techniques, Cell Differentiation, Cell Line, Cell Lineage, Cells, Cultured, Embryonic Stem Cells, Gene Expression Profiling, Hematopoietic Stem Cells, Immunophenotyping, Megakaryocyte Progenitor Cells, Megakaryocytes, Mice, Mice, Transgenic, Promoter Regions, Genetic, Stem Cells, Transcription Factors, Transcription, Genetic