Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Medullary thymic epithelial cells (mTECs) are specialized for inducing central immunological tolerance to self-antigens. To accomplish this, mTECs must adopt a mature phenotype characterized by expression of the autoimmune regulator Aire, which activates the transcription of numerous genes encoding tissue-restricted self-antigens. The mechanisms that control mature Aire(+) mTEC development in the postnatal thymus remain poorly understood. We demonstrate here that, although either CD4(+) or CD8(+) thymocytes are sufficient to sustain formation of a well-defined medulla, expansion of the mature mTEC population requires autoantigen-specific interactions between positively selected CD4(+) thymocytes bearing autoreactive T cell receptor (TCR) and mTECs displaying cognate self-peptide-MHC class II complexes. These interactions also involve the engagement of CD40 on mTECs by CD40L induced on the positively selected CD4(+) thymocytes. This antigen-specific TCR-MHC class II-mediated crosstalk between CD4(+) thymocytes and mTECs defines a unique checkpoint in thymic stromal development that is pivotal for generating a mature mTEC population competent for ensuring central T cell tolerance.

Original publication




Journal article



Publication Date





451 - 463


Animals, Autoantigens, CD4-Positive T-Lymphocytes, CD40 Antigens, CD40 Ligand, Epithelial Cells, Humans, Mice, Mice, Knockout, Nuclear Proteins, Self Tolerance, Thymus Gland, Trans-Activators, Transcription Factors