Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Smad2 and Smad3 are closely related effectors of TGFbeta/Nodal/Activin-related signaling. Smad3 mutant mice develop normally, whereas Smad2 plays an essential role in patterning the embryonic axis and specification of definitive endoderm. Alternative splicing of Smad2 exon 3 gives rise to two distinct protein isoforms. The short Smad2(Deltaexon3) isoform, unlike full-length Smad2, Smad2(FL), retains DNA-binding activity. Here, we show that Smad2(FL) and Smad2(Deltaexon3) are coexpressed throughout mouse development. Directed expression of either Smad2(Deltaexon3) or Smad3, but not Smad2(FL), restores the ability of Smad2-deficient embryonic stem (ES) cells to contribute descendants to the definitive endoderm in wild-type host embryos. Mice engineered to exclusively express Smad2(Deltaexon3) correctly specify the anterior-posterior axis and definitive endoderm, and are viable and fertile. Moreover, introducing a human Smad3 cDNA into the mouse Smad2 locus similarly rescues anterior-posterior patterning and definitive endoderm formation and results in adult viability. Collectively, these results demonstrate that the short Smad2(Deltaexon3) isoform or Smad3, but not full-length Smad2, activates all essential target genes downstream of TGFbeta-related ligands, including those regulated by Nodal.

Original publication




Journal article


Genes Dev

Publication Date





152 - 163


Animals, Body Patterning, DNA-Binding Proteins, Embryo, Mammalian, Endoderm, Fertility, Fetal Viability, Gene Expression Regulation, Developmental, Growth and Development, Humans, Mice, Mice, Mutant Strains, Mice, Transgenic, Protein Isoforms, Smad2 Protein, Smad3 Protein, Stem Cells, Trans-Activators