Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This article reports the mechanical properties and in vitro evaluation of a collagen scaffold fabricated using an indirect 3D printing technique. Collagen scaffolds, featuring predefined internal channels and capillary networks, were manufactured using phase change printing. It was observed that the collagen scaffolds featured internal channels and a hierarchical structure that varied over length scales of 10-400 microm. In vitro evaluation using hMSCs demonstrated that the resultant collagen based scaffolds have the ability to support hMSC cell attachment and proliferation; cells can migrate and survive deep within the structure of the scaffold. The cell numbers increased 2.4 times over 28 days in culture for the lysine treated scaffolds. The cells were spread along the collagen fibers to form a 3D structure and extracellular matrix was detected on the surface of the scaffolds after 4 weeks in culture. The crosslinking treatment enhanced the biostability and dynamic properties of the collagen scaffolds significantly.

Original publication




Journal article


J Biomed Mater Res B Appl Biomater

Publication Date





519 - 528


Animals, Cattle, Cell Proliferation, Cells, Cultured, Collagen, Humans, Materials Testing, Tissue Engineering