Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The advent of self-inflating hydrogel tissue expanders heralded a significant advance in the reconstructive potential of this technique. Their use, however, is limited by their uncontrolled isotropic (i.e., uniform in all directions) expansion. METHODS: Anisotropy (i.e., directional dependence) was achieved by annealing a hydrogel copolymer of poly(methyl methacrylate-co-vinyl pyrrolidone) under a compressive load for a specified time period. The expansion ratio is dictated by the percentage of vinyl pyrrolidone content and the degree of compression. The expansion rate is modified by incorporating the polymer within a silicone membrane. The in vivo efficacy of differing prototype devices was investigated in juvenile pigs under United Kingdom Home Office Licence. The devices were implanted within a submucoperiosteal pocket in a total of six porcine palates; all were euthanized by 6 weeks after implantation. A longitudinal volumetric assessment of the expanded tissue was conducted, in addition to postmortem analysis of the bony and mucoperiosteal palatal elements. RESULTS: Uncoated devices caused excessive soft-tissue expansion that resulted in mucoperiosteal ulceration, thus necessitating animal euthanasia. The silicone-coated devices produced controlled soft-tissue expansion over the 6-week study period. There was a statistically significant increase in the volume of expanded soft tissue with no evidence of a significant acute inflammatory response to the implant, although peri-implant capsule formation was observed. Attenuation of the bony palatal shelf was noted. CONCLUSION: A unique anisotropic hydrogel device capable of controlled expansion has been developed that addresses a number of the shortcomings of the technology hitherto available.

Original publication

DOI

10.1097/PRS.0b013e3182362100

Type

Journal article

Journal

Plast Reconstr Surg

Publication Date

01/2012

Volume

129

Pages

79 - 88

Keywords

Animals, Anisotropy, Dental Impression Technique, Female, Hydrogel, Polyethylene Glycol Dimethacrylate, Palate, Hard, Polymethyl Methacrylate, Prosthesis Design, Pyrrolidinones, Silicones, Swine, Tissue Expansion, Tissue Expansion Devices