Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Numerous mathematical models exploring the emergence of complexity within developmental biology incorporate diffusion as the dominant mechanism of transport. However, self-organizing paradigms can exhibit the biologically undesirable property of extensive sensitivity, as illustrated by the behavior of the French-flag model in response to intrinsic noise and Turing's model when subjected to fluctuations in initial conditions. Domain growth is known to be a stabilizing factor for the latter, though the interaction of intrinsic noise and domain growth is underexplored, even in the simplest of biophysical settings. Previously, we developed analytical Fourier methods and a description of domain growth that allowed us to characterize the effects of deterministic domain growth on stochastically diffusing systems. In this paper we extend our analysis to encompass stochastically growing domains. This form of growth can be used only to link the meso- and macroscopic domains as the "box-splitting" form of growth on the microscopic scale has an ill-defined thermodynamic limit. The extension is achieved by allowing the simulated particles to undergo random walks on a discretized domain, while stochastically controlling the length of each discretized compartment. Due to the dependence of diffusion on the domain discretization, we find that the description of diffusion cannot be uniquely derived. We apply these analytical methods to two justified descriptions, where it is shown that, under certain conditions, diffusion is able to support a consistent inhomogeneous state that is far removed from the deterministic equilibrium, without additional kinetics. Finally, a logistically growing domain is considered. Not only does this show that we can deal with nonmonotonic descriptions of stochastic growth, but it is also seen that diffusion on a stationary domain produces different effects to diffusion on a domain that is stationary "on average." © 2011 American Physical Society.

Original publication

DOI

10.1103/PhysRevE.84.041905

Type

Journal article

Journal

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

Publication Date

03/10/2011

Volume

84