Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cryopreservation of stem cells, especially embryonic stem cells, is problematic because of low post-thaw cell survival rates and spontaneous differentiation following recovery. In this investigation, mouse embryonic stem cells (mESCs) were encapsulated in arginine-glycine-aspartic acid-serine (RGDS)-coupled calcium alginates (1.2 percent, w/v), allowed to attach to the substratum and then cryopreserved in 10 percent (v/v) dimethyl sulfoxide (DMSO) solution at a slow cooling rate of 1 C per min. RGDS coupling to alginate was confirmed by Transmission Fourier Transform Infra-Red spectroscopy (T-FTIR) and quantified by using ninhydrin-Ultraviolet/Visible light (ninhydrin-UV/VIS) assay. Flow cytometry data showed that mESCs cryopreserved in RGDS-alginate beads had a higher expression of stem cell markers compared with cells cryopreserved in suspension or cells cryopreserved in unmodified alginates. Cell viability after thawing was assessed using trypan blue exclusion assay and monitored using Alamar blue assay for 6 hours. It was shown that post-thaw cell survival rate was significantly higher for cells encapsulated in RGDS-modified alginate (93 ± 2 percent, mean and standard error) than those in suspension (52 ± 2 percent) or in unmodified alginates (62 ± 3 percent). These results showed that cells encapsulated and attached to a substratum have better survival rate and stem cell marker expression 24 hours after cryopreservation than those in suspension. Encapsulation in RGDS-alginate was optimized for peptide concentration, cryoprotective agent loading time and cooling rate. The best result was obtained when using 12.5 mg peptide per g alginate, 30 minutes loading time and 1 C per min cooling rate.

Type

Journal article

Journal

Cryo Letters

Publication Date

09/2011

Volume

32

Pages

389 - 401

Keywords

Alginates, Animals, Cell Differentiation, Cell Survival, Cells, Immobilized, Cryopreservation, Cryoprotective Agents, Dimethyl Sulfoxide, Embryonic Stem Cells, Flow Cytometry, Mice, Ninhydrin, Oligopeptides, Oxazines, Platelet Aggregation Inhibitors, Spectrophotometry, Spectroscopy, Fourier Transform Infrared, Trypan Blue, Xanthenes