Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A method to functionalize alginate by introducing monomeric or self-assembling (tetrameric) fibronectin (FN) domains is described, leading to a functional scaffold, which is used for three dimensional (3D) culture of human endometrial stromal cells (EnSCs). EnSCs encapsulated in the functional alginate were cultured under perfusion using the TissueFlex® platform, a multiple parallel microbioreactor system for 3D cell culture. The effect of the novel scaffold and the effect of perfusion were examined. Cell viability, proliferation, and extracellular matrix (ECM) deposition were determined and the results compared with those obtained with cells encapsulated in non-functionalized alginate, and also those without perfusion. Staining for focal adhesions and actin showed maximal cell adhesion only for alginate-tetrameric FN scaffolds under perfusion, associated with a significant increase in cell number over 7 days culture; in contrast to poor cell adhesion and a decrease in cell number for non-functionalized alginate scaffolds (irrespective of perfused/static culture) and 3D static culture (irrespective of the scaffold). Conjugation of alginate to FN was an absolute requirement to attenuate the loss of cell metabolic activity over 7 days culture. ECM deposition for blank alginate and alginate-monomeric FN was similar, but increased around 2-fold and 3-fold for alginate-tetrameric FN under static and perfusion culture, respectively. It is concluded that the requirement for EnSC engagement with multivalent integrin α5β1 ligands and perfused culture are both essential as a first step toward endometrial tissue engineering.

Original publication

DOI

10.1002/jbm.a.33177

Type

Journal article

Journal

J Biomed Mater Res A

Publication Date

11/2011

Volume

99

Pages

211 - 220

Keywords

Actins, Alginates, Animals, Bioreactors, Carbohydrate Conformation, Cell Culture Techniques, Cell Proliferation, Cells, Cultured, Endometrium, Extracellular Matrix, Female, Focal Adhesions, Humans, Hydrogels, Integrin alpha5beta1, Ligands, Materials Testing, Paxillin, Stromal Cells, Tissue Engineering, Tissue Scaffolds