Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

It is becoming increasingly apparent that the strength of GABAergic synaptic transmission is dynamic. One parameter that can establish differences in the actions of GABAergic synapses is the ionic driving force for the chloride-permeable GABA(A) receptor (GABA(A)R). Here we review some of the sophisticated ways in which this ionic driving force can vary within neuronal circuits. This driving force for GABA(A)Rs is subject to tight spatial control, with the distribution of Cl⁻ transporter proteins and channels generating regional variation in the strength of GABA(A)R signalling across a single neuron. GABA(A)R dynamics can result from short-term changes in their driving force, which involve the temporary accumulation or depletion of intracellular Cl⁻. In addition, activity-dependent changes in the expression and function of Cl⁻ regulating proteins can result in long-term shifts in the driving force for GABA(A)Rs. The multifaceted regulation of the ionic driving force for GABA(A)Rs has wide ranging implications for mature brain function, neural circuit development, and disease.

Original publication




Journal article


Neural Plast

Publication Date





Animals, Humans, Neural Inhibition, Neurons, Receptors, GABA-A, Synapses, Synaptic Transmission, gamma-Aminobutyric Acid