Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Retinal degeneration due to genetic, diabetic and age-related disease is the most common cause of blindness in the developed world. Blindness occurs through the loss of the light-sensing photoreceptors; to restore vision, it would be necessary to introduce alternative photosensitive components into the eye. The recent development of an electronic prosthesis placed beneath the severely diseased retina has shown that subretinal stimulation may restore some visual function in blind patients. This proves that residual retinal circuits can be reawakened after photoreceptor loss and defines a goal for stem-cell-based therapy to replace photoreceptors. Advances in reprogramming adult cells have shown how it may be possible to generate autologous stem cells for transplantation without the need for an embryo donor. The recent success in culturing a whole optic cup in vitro has shown how large numbers of photoreceptors might be generated from embryonic stem cells. Taken together, these threads of discovery provide the basis for optimism for the development of a stem-cell-based strategy for the treatment of retinal blindness. © 2011 The Royal Society.

Original publication

DOI

10.1098/rspb.2011.1028

Type

Journal article

Journal

Proceedings of the Royal Society B: Biological Sciences

Publication Date

01/01/2011

Volume

278

Pages

3009 - 3016