Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractFriedreich ataxia (FRDA) is a rare genetic multisystem disorder caused by a pathological GAA trinucleotide repeat expansion in the FXN gene. The numerous drawbacks of historical cellular and rodent models of FRDA have caused difficulty in performing effective mechanistic and translational studies to investigate the disease. The recent discovery and subsequent development of induced pluripotent stem cell (iPSC) technology provides an exciting platform to enable enhanced disease modelling for studies of rare genetic diseases. Utilising iPSCs, researchers have created phenotypically relevant and previously inaccessible cellular models of FRDA. These models enable studies of the molecular mechanisms underlying GAA-induced pathology, as well as providing an exciting tool for the screening and testing of novel disease-modifying therapies. This review explores how the use of iPSCs to study FRDA has developed over the past decade, as well as discussing the enormous therapeutic potentials of iPSC-derived models, their current limitations and their future direction within the field of FRDA research. Graphical abstract

Original publication

DOI

10.1186/s40035-023-00376-8

Type

Journal article

Journal

Translational Neurodegeneration

Publisher

Springer Science and Business Media LLC

Publication Date

20/09/2023

Volume

12