Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Spatial variation in cellular phenotypes underlies heterogeneity in immune recognition and response to therapy in cancer and many other diseases. Spatial transcriptomics holds the potential to quantify such variation, but existing analysis methods are limited by their focus on individual tasks such as spot deconvolution. We present BayesTME, an end-to-end Bayesian method for analyzing spatial transcriptomics data. BayesTME unifies several previously distinct analysis goals under a single, holistic generative model. This unified approach enables BayesTME to deconvolve spots into cell phenotypes without any need for paired single-cell RNA-seq. BayesTME then goes beyond spot deconvolution to uncover spatial expression patterns among coordinated subsets of genes within phenotypes, which we term spatial transcriptional programs. BayesTME achieves state-of-the-art performance across myriad benchmarks. On human and zebrafish melanoma tissues, BayesTME identifies spatial transcriptional programs that capture fundamental biological phenomena such as bilateral symmetry and tumor-associated fibroblast and macrophage reprogramming. BayesTME is open source.

Original publication




Journal article


Cell Syst

Publication Date





605 - 619.e7


Bayesian methods, machine learning, spatial gene expression, spatial modeling, spatial transcriptomics, tumor microenvironment, Humans, Animals, Bayes Theorem, Zebrafish, Benchmarking, Gene Expression Profiling, Macrophages