Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Stem cell and cell therapies, particularly autologous cell therapies, are becoming a common practice. However, in order for these technologies to achieve wide-scale clinical application, the prohibitively high cost associated with these therapies must be addressed through creative engineering. Membranes can be a disruptive technology to reshape the bioprocessing and manufacture of cellular products and significantly reduce the cost of autologous cell therapies. Examples of successful membrane applications include expansions of CAR-T cells, various human stem cells, and production of extracellular vesicles (EVs) using hollow fibre membrane bioreactors. Novel membranes with tailored functions and surface properties and novel membrane modules that can accommodate the changing needs for surface area and transport properties are to be developed to fulfil this key role.

Original publication

DOI

10.3390/membranes12121182

Type

Journal article

Journal

Membranes

Publisher

MDPI AG

Publication Date

24/11/2022

Volume

12

Pages

1182 - 1182