Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The recent approval of voretigene neparvovec (Luxturna®) for patients with biallelic RPE65 mutation-associated inherited retinal dystrophy with viable retinal cells represents an important step in the development of ocular gene therapies. Herein, we review studies investigating the episomal persistence of different recombinant adeno-associated virus (rAAV) vector genomes and the pre-clinical and clinical evidence of long-term effects of different RPE65 gene replacement therapies. A targeted review of articles published between 1974 and January 2021 in Medline®, Embase®, and other databases, was conducted, followed by a descriptive longitudinal analysis of the clinical trial outcomes of voretigene neparvovec. Following an initial screening, 14 publications examining the episomal persistence of different rAAV genomes and 71 publications evaluating gene therapies in animal models were included. Viral genomes were found to persist for at least 22 months (longest study follow-up) as transcriptionally active episomes. Treatment effects lasting almost a decade were reported in canine disease models, with more pronounced effects the earlier the intervention. The clinical trial outcomes of voretigene neparvovec are consistent with pre-clinical findings and reveal sustained results for up to 7.5 years for the full-field light sensitivity threshold test and 5 years for the multi-luminance mobility test in the Phase I and Phase III trials, respectively. In conclusion, the therapeutic effect of voretigene neparvovec lasts for at least a decade in animal models and 7.5 years in human subjects. Since retinal cells can retain functionality over their lifetime after transduction, these effects may be expected to last even longer in patients with a sufficient number of outer retinal cells at the time of intervention.

Original publication

DOI

10.1159/000526317

Type

Journal article

Journal

Ophthalmic Res

Publication Date

14/09/2022