Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

RNA editing allows correction of pathological point mutations without permanently altering genomic DNA. Theoretically targetable to any RNA type and site, its flexibility and reversibility makes it a potentially powerful gene editing tool. RNA editing offers a host of potential advantages in specific niches when compared to currently available alternative gene manipulation techniques. Unlike DNA editors, which are currently too large to be delivered in vivo using a viral vector, smaller RNA editors fit easily within the capabilities of an adeno-associated virus (AAV). Unlike gene augmentation, which is limited by gene size and viral packaging constraints, RNA editing may correct transcripts too long to fit within a viral vector. In this article we examine the development of RNA editing and discuss potential applications and pitfalls. We argue that, although in its infancy, an RNA editing approach can offer unique advantages for selected retinal diseases.

Original publication





Book title

International Review of Cell and Molecular Biology

Publication Date